翻訳と辞書
Words near each other
・ Grzanka, Masovian Voivodeship
・ Grzawa
・ Grzbiet Lasocki
・ Grzebielin
・ Grzebienie
・ Grzebienie-Kolonia
・ Grzebieniec, Pomeranian Voivodeship
・ Grzebienisko
・ Grzebień, Łódź Voivodeship
・ Grzeboszowice
・ Grzebowilk, Gmina Siennica
・ Grzebsk
・ Grzechotki
・ Grzechynia
・ Grzeczna Panna
Grzegorczyk hierarchy
・ Grzegorz Adam Urbanowski
・ Grzegorz Antoni Ogiński
・ Grzegorz Arłukowicz
・ Grzegorz Baran
・ Grzegorz Bargiel
・ Grzegorz Bartczak
・ Grzegorz Bociek
・ Grzegorz Bolesław Frąckowiak
・ Grzegorz Bonin
・ Grzegorz Branicki
・ Grzegorz Braun
・ Grzegorz Bronowicki
・ Grzegorz Błaszczyk
・ Grzegorz Ciechowski


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Grzegorczyk hierarchy : ウィキペディア英語版
Grzegorczyk hierarchy
The Grzegorczyk hierarchy (pronounced: ), named after the Polish logician Andrzej Grzegorczyk, is a hierarchy of functions used in computability theory (Wagner and Wechsung 1986:43). Every function in the Grzegorczyk hierarchy is a primitive recursive function, and every primitive recursive function appears in the hierarchy at some level. The hierarchy deals with the rate at which the values of the functions grow; intuitively, functions in lower level of the hierarchy grow slower than functions in the higher levels.
== Definition ==

First we introduce an infinite set of functions, denoted ''Ei'' for some natural number ''i''. We define E_0(x,y)=x+y and E_1(x)=x^2+2. I.e., ''E0'' is the addition function, and ''E1'' is a unary function which squares its argument and adds two. Then, for each ''n'' greater than 1, we define E_n(x)=E^_(2), i.e. the ''x''-th iterate of E_ evaluated at 2.
From these functions we define the Grzegorczyk hierarchy. \mathcal^n, the ''n''-th set in the hierarchy, contains the following functions:
# ''Ek'' for ''k'' < ''n''
# the zero function (''Z''(''x'') = 0);
# the successor function (''S''(''x'') = ''x'' + 1);
# the projection functions ( p_i^m(t_1, t_2, \dots, t_m) = t_i );
# the (generalized) compositions of functions in the set (if ''h'', ''g''1, ''g''2, ... and ''g''m are in \mathcal^n, then f(\bar) = h(g_1(\bar), g_2(\bar), \dots, g_m(\bar)) is as well)〔; and
# the results of limited (primitive) recursion applied to functions in the set, (if ''g'', ''h'' and ''j'' are in \mathcal^n and f(t, \bar) \leq j(t, \bar) for all ''t'' and \bar, and further f(0, \bar) = g(\bar) and f(t+1, \bar) = h(t,\bar,f(t,\bar)), then ''f'' is in \mathcal^n as well)〔
In other words, \mathcal^n is the closure of set B_n = \ with respect to function composition and limited recursion (as defined above).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Grzegorczyk hierarchy」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.